We are a team with a product devoted to forecasting energy usage
for building management,
for utility management,
for energy harvesters.
It is our endeavor. It is our vision and direction.
For energy managers...
WeatherWatt Inc. provides on-demand building energy demand-forecasting for each of your building properties up to 72 hours into the future.
Our zero-touch predictive system allows stakeholders to manage their building energy options and stay on track with their energy management objectives with minimal up-front costs.
By identifying future usage conditons, we empower energy managers to proactively prepare options to reduce peak demand.
Our forecasts, specifically tuned to your building, are delivered to you either through our secure data portal, or at your discretion, by email.
Using our insight, energy managers can lower their electric costs, mitigate risks to their budget, and further improve their impact on improving sustainability within the urban environment.
Our team has a unique set of talents and interests, enabling us to focus on the aspects of building energy usage, and energy production forecast using advanced forecast modeling with state-of-the art computer systems.
Mr. Thomas Legbandt received a B.S. in Biochemistry and Physics from UCLA. He was Technical Director for Barcel Electronics, Research Director for Reveo Inc., and Research Chemist for Imitec Inc., and holds eleven patents. He is currently a Senior College Lab Technician at The City College of New York (CCNY) and is involved with automated data gathering and processing of environmental data from various instruments including several lidar systems, and designing facilities for new UV lidars.
Prof. González earned a Ph.D in Mechanical Engineering from the Georgia Institute of Technology in 1994 and B.S. from the University of Puerto Rico-Mayagüez in 1988. He joined The City College of New York faculty in 2008 after tenures at Santa Clara University, California, and as Chairman and Professor of Mechanical Engineering at the University of Puerto Rico-Mayagüez. Professor González holds several patents in solar energy equipment, aerosol detection, and energy forecasting for buildings.
Dr. Mark Arend received a Ph.D. in Applied Physics from Columbia University in 1991, and has worked in industry at Tyco Telecom, and Teledyne MEC. He is currently a Research Associate at The City College of New York (CCNY), and is involved with Lidar and Atmospheric Modeling Systems to monitor and provide weather forecasts related to energy usage and energy production in urban regions. He is facilitating WeatherWatt to help customers application needs.
Dr. Luis Ortiz Uriarte received his Ph.D. from The City College of New York. He is a Data and Climate Fellow with the Office of the Secretary of Transportation (Climate Policy Office), U.S. Department of Transportation. And is currently a Visiting Research Scholar at the Urban Systems Lab, The New School, NYC.
Urban Forecasting
The Weather Research and Forecasting (WRF) model, developed by NCAR, is the most widely
used model for US Weather Forecasters. WeatherWatt uses a modified version (uWRF) that includes
a multi-layer urban canopy parameterization (BEP; Martilli et al., 2002) and a building energy
model (BEM; Salamanca and Martilli, 2009) to improve forecasts of weather conditions in New York
City (NYC) for the next 72-h. BEP takes into account the impact of the buildings in the momentum,
energy equations and the turbulent kinetic energy. Turbulence is vertically distributed from the
surface to the top of the buildings. On the other hand, the BEM considers the diffusion of heat
through walls, roofs and floor; natural ventilation; radiation exchange between indoor surfaces;
generations of heat due to occupants and equipment and the consumption due to air conditioning
systems.
The heterogeneity of New York's urban landscape is represented using the National Building
Statistics Database at 1-km (Burian et al. 2008). Three two-way nested domains were constructed
with spatial grid resolution of 9, 3, 1 kilometers with finer grid covering the five boroughs of
the NYC (Manhattan, Brooklyn, Queens, Bronx, and Staten Island). Fifty one terrain following sigma
vertical levels were defined with twenty levels in the first kilometer. The Bougeault-Lacarrere
(1989) planetary boundary layer scheme was adopted for better use with BEP/BEM urban models. The
initial and boundary conditions are obtained from the North American Mesoscale model (NAM) data
sets with 12 km resolution at 3-h intervals with a spin up time of 12-h. The outputs for 2-m
temperature, 10-m wind speed and 1-h rain accumulations are presented at 1-h intervals for a 72-h
period.
These products are continuously validated thanks to the networks of ground and vertical
sensors available in the New York City metropolitan area. A well-documented validation case is
the heat wave of summer 2010 (Gutierrez et al. 2013). The multilayer parameterization BEP coupled
with the AC system scheme BEM showed a more accurate representation of the temperature and wind
fields in the urban canopy during this extreme event. Detailed high resolution building information
constitutes an important factor to correctly simulate meteorological parameters close to the
surface over NYC. The anthropogenic heat from AC systems strengthened turbulent kinetic energy
mainly above roof tops, where maximum turbulence was reached. Further, improvements to the urban
parameterization are in progress. The main goal is to improve the latent heat representation in
the urban regions by implementing a cooling tower model and evaporation from horizontal urban
surfaces after rain events. Further products will be made available to the public as they are
validated, including storm predictions and energy forecasts.
The goal of our company is to provide community scale weather forecasting and climate
analysis for densely populated cities in the US and worldwide.
The simulations are possible thanks to The CUNY High Performance Computing Center that
provides the necessary computational resources as well as the technical support for model
installation.
We will enjoy an opportunity to speak with you.